Implement VSU

This commit is contained in:
Guy Perfect 2024-10-20 18:52:19 -05:00
parent 50903c7513
commit 3afe0282c2
7 changed files with 734 additions and 43 deletions

View File

@ -3,7 +3,7 @@
/********************************* Constants *********************************/ /******************************** Lookup Data ********************************/
/* Memory access address masks by data type */ /* Memory access address masks by data type */
static const uint32_t TYPE_MASKS[] = { static const uint32_t TYPE_MASKS[] = {
@ -20,6 +20,7 @@ static const uint32_t TYPE_MASKS[] = {
static void vipRead (VB *, uint32_t, int, int32_t *); static void vipRead (VB *, uint32_t, int, int32_t *);
static void vipWrite(VB *, uint32_t, int, int32_t, int); static void vipWrite(VB *, uint32_t, int, int32_t, int);
static void vsuWrite(VB *, uint32_t, int, int32_t, int);
@ -197,7 +198,9 @@ static void busWrite(VB*sim,uint32_t address,int type,int32_t value,int debug){
vipWrite(sim, address, type, value, debug); vipWrite(sim, address, type, value, debug);
break; break;
case 1: break; /* VSU */ case 1: /* VSU */
vsuWrite(sim, address, type, value, debug);
break;
case 2: /* Misc. I/O */ case 2: /* Misc. I/O */
busWriteMisc(sim, address, type, value); busWriteMisc(sim, address, type, value);

View File

@ -857,7 +857,7 @@ static int cpuFloatCommon(VB *sim, double value, int32_t *bits) {
} }
/* Underflow */ /* Underflow */
if (value < 0 ? value > -FLT_MIN : value < FLT_MIN) { if (value != 0 && value > -FLT_MIN && value < FLT_MIN) {
sim->cpu.psw.fud = 1; sim->cpu.psw.fud = 1;
floatVal = 0; floatVal = 0;
/* TODO: Can this produce negative zero? */ /* TODO: Can this produce negative zero? */
@ -872,10 +872,10 @@ static int cpuFloatCommon(VB *sim, double value, int32_t *bits) {
/* Update state */ /* Update state */
*bits = cpuFloatToWord(floatVal); *bits = cpuFloatToWord(floatVal);
sim->cpu.psw.cy = floatVal < 0; sim->cpu.psw.cy = floatVal < 0;
sim->cpu.psw.ov = 0; sim->cpu.psw.ov = 0;
sim->cpu.psw.s = floatVal < 0; sim->cpu.psw.s = floatVal < 0;
sim->cpu.psw.z = floatVal == 0; sim->cpu.psw.z = floatVal == 0;
return 0; return 0;
} }

View File

@ -6,16 +6,16 @@
/***************************** Library Functions *****************************/ /***************************** Library Functions *****************************/
/* Process component */ /* Process component */
static int padEmulate(VB *sim, uint32_t clocks) { static void padEmulate(VB *sim, uint32_t clocks) {
/* No hardware read in progress */ /* No hardware read in progress */
if (sim->pad.si_stat == 0) if (sim->pad.si_stat == 0)
return 0; return;
/* Hardware read completes after time to process */ /* Hardware read completes after time to process */
if (sim->pad.si_stat > clocks) { if (sim->pad.si_stat > clocks) {
sim->pad.si_stat -= clocks; sim->pad.si_stat -= clocks;
return 0; return;
} }
/* Complete hardware read */ /* Complete hardware read */
@ -30,7 +30,6 @@ static int padEmulate(VB *sim, uint32_t clocks) {
(sim->pad.keys & 0x000E) == 0 (sim->pad.keys & 0x000E) == 0
) sim->cpu.irq |= 0x0001; ) sim->cpu.irq |= 0x0001;
return 0;
} }
/* Read a value from SCR */ /* Read a value from SCR */

View File

@ -21,11 +21,11 @@ static void tmrUpdate(VB *sim, uint16_t value) {
/***************************** Library Functions *****************************/ /***************************** Library Functions *****************************/
/* Process component */ /* Process component */
static int tmrEmulate(VB *sim, uint32_t clocks) { static void tmrEmulate(VB *sim, uint32_t clocks) {
/* Timer is disabled */ /* Timer is disabled */
if (!sim->tmr.t_enb) if (!sim->tmr.t_enb)
return 0; return;
/* Process all clocks */ /* Process all clocks */
for (;;) { for (;;) {
@ -34,7 +34,7 @@ static int tmrEmulate(VB *sim, uint32_t clocks) {
if (sim->tmr.clocks > clocks) { if (sim->tmr.clocks > clocks) {
sim->tmr.clocks -= clocks; sim->tmr.clocks -= clocks;
sim->tmr.until -= clocks; sim->tmr.until -= clocks;
return 0; return;
} }
/* Advance forward the component's number of clocks */ /* Advance forward the component's number of clocks */

199
core/vb.c
View File

@ -11,6 +11,63 @@
/* Output image */ /* Output image */
typedef uint8_t Pixels[2][384*224]; typedef uint8_t Pixels[2][384*224];
/* VSU channel */
typedef struct {
/* Envelope */
struct {
/* Register state */
uint8_t enb; /* Modifications enabled */
uint8_t dir; /* Modification direction */
uint8_t interval; /* Modification interval */
uint8_t rep; /* Repeat modifications */
uint8_t value; /* Master output level */
/* Other state */
uint32_t clocks; /* Clocks until modification */
uint8_t reload; /* Automatic reload value */
} env;
/* Frequency */
struct {
uint16_t current; /* Current value */
uint16_t written; /* Last value written */
} freq;
/* Stereo levels */
struct {
uint8_t left; /* Left output level */
uint8_t right; /* Right output level */
} lrv;
/* Control */
struct {
/* Register state */
uint8_t auto_; /* Shutoff enabled */
uint8_t enb; /* Sound generation enabled */
uint8_t interval; /* Shutoff interval */
/* Other state */
uint32_t clocks; /* Clocks until shutoff */
} int_;
/* Waveform */
struct {
/* Register state */
uint8_t wave; /* Waveform index */
/* Other state */
int sample; /* Current sample index */
} wave;
/* Other state */
uint32_t clocks; /* Clocks until next sample */
uint16_t output[2]; /* Current output sample */
} Channel;
/* Simulation state */ /* Simulation state */
struct VB { struct VB {
@ -93,7 +150,7 @@ struct VB {
/* Game pad */ /* Game pad */
struct { struct {
/* Hardware state */ /* Register state */
uint8_t k_int_inh; /* Interrupt acknowledge/disable */ uint8_t k_int_inh; /* Interrupt acknowledge/disable */
uint8_t para_si; /* Read reset signal */ uint8_t para_si; /* Read reset signal */
uint8_t s_abt_dis; /* Abort hardware read */ uint8_t s_abt_dis; /* Abort hardware read */
@ -102,7 +159,7 @@ struct VB {
uint32_t si_stat; /* Hardware read in progress */ uint32_t si_stat; /* Hardware read in progress */
uint8_t soft_ck; /* Controller communication signal */ uint8_t soft_ck; /* Controller communication signal */
/* Simulation state */ /* Other state */
uint16_t keys; /* Next input bits */ uint16_t keys; /* Next input bits */
int step; /* Software read processing phase */ int step; /* Software read processing phase */
} pad; } pad;
@ -110,13 +167,13 @@ struct VB {
/* Timer */ /* Timer */
struct { struct {
/* Hardware state */ /* Register state */
uint8_t t_clk_sel; /* Counter tick duration */ uint8_t t_clk_sel; /* Counter tick duration */
uint8_t t_enb; /* Enable timer */ uint8_t t_enb; /* Enable timer */
uint8_t tim_z_int; /* Enable interrupt */ uint8_t tim_z_int; /* Enable interrupt */
uint8_t z_stat; /* Zero status */ uint8_t z_stat; /* Zero status */
/* Simulation state */ /* Other state */
uint32_t clocks; /* Master clocks to wait */ uint32_t clocks; /* Master clocks to wait */
uint16_t counter; /* Current counter value */ uint16_t counter; /* Current counter value */
uint16_t reload; /* Reload counter value */ uint16_t reload; /* Reload counter value */
@ -135,7 +192,7 @@ struct VB {
/* Display processor */ /* Display processor */
struct { struct {
/* Hardware state */ /* Register state */
uint8_t disp; /* Display enabled */ uint8_t disp; /* Display enabled */
uint8_t fclk; /* Frame clock signal high */ uint8_t fclk; /* Frame clock signal high */
uint8_t l0bsy; /* Displaying left frame buffer 0 */ uint8_t l0bsy; /* Displaying left frame buffer 0 */
@ -147,7 +204,7 @@ struct VB {
uint8_t scanrdy; /* Mirrors are stable */ uint8_t scanrdy; /* Mirrors are stable */
uint8_t synce; /* Servo enabled */ uint8_t synce; /* Servo enabled */
/* Simulation state */ /* Other state */
uint8_t brt[4]; /* Precomputed brightness */ uint8_t brt[4]; /* Precomputed brightness */
int buffer; /* Index of frame buffer to display */ int buffer; /* Index of frame buffer to display */
uint32_t clocks; /* Master clocks to wait */ uint32_t clocks; /* Master clocks to wait */
@ -163,7 +220,7 @@ struct VB {
/* Pixel processor */ /* Pixel processor */
struct { struct {
/* Hardware state */ /* Register state */
uint8_t f0bsy; /* Drawing into frame buffer 0 */ uint8_t f0bsy; /* Drawing into frame buffer 0 */
uint8_t f1bsy; /* Drawing into frame buffer 1 */ uint8_t f1bsy; /* Drawing into frame buffer 1 */
uint8_t overtime; /* Drawing extends into display interval */ uint8_t overtime; /* Drawing extends into display interval */
@ -172,7 +229,7 @@ struct VB {
uint32_t sbout; /* Drawing specified vertical output position */ uint32_t sbout; /* Drawing specified vertical output position */
uint8_t xpen; /* Drawing enabled */ uint8_t xpen; /* Drawing enabled */
/* Simulation state */ /* Other state */
uint32_t clocks; /* Master clocks to wait */ uint32_t clocks; /* Master clocks to wait */
int column; /* Current horizontal output position */ int column; /* Current horizontal output position */
int frame; /* FRMCYC counter */ int frame; /* FRMCYC counter */
@ -200,6 +257,58 @@ struct VB {
uint8_t ram[0x40000]; /* Video memory */ uint8_t ram[0x40000]; /* Video memory */
} vip; } vip;
/* VSU */
struct {
/* Audio sources */
Channel channels[6];
/* Channel 5 frequency modification */
struct {
/* Register state */
uint8_t clk; /* Base modification clock */
uint8_t dir; /* Sweep direction */
uint8_t enb; /* Modifications enabled */
uint8_t func; /* Modification function */
uint8_t interval; /* Modification interval */
uint8_t rep; /* Repeat modulation */
uint8_t shift; /* Sweep shift amount */
/* Other state */
uint32_t clocks; /* Clocks until modification */
uint16_t next; /* Next frequency value */
int sample; /* Current sample index */
} freqmod;
/* Channel 6 noise generator */
struct {
/* Register state */
uint8_t tap; /* LSFR feedback bit position */
/* Other state */
uint16_t register_; /* Pseudorandom bits */
} noise;
/* Sample output */
struct {
float i1[2]; /* Previous analog input sample */
float o1[2]; /* Previous analog output sample */
uint32_t capacity; /* Number of audio frames in samples */
uint32_t offset; /* Position in output buffer */
int16_t *samples; /* Output memory */
} out;
/* Memory */
int8_t modulation[32]; /* Modulation amounts */
uint8_t waves[5][32]; /* Wafeform samples */
/* Other state */
uint32_t clocks; /* Clocks until next output sample */
int sample; /* Output sample index, period 417 */
} vsu;
/* Other state */ /* Other state */
uint8_t wcr; /* Wait controller state */ uint8_t wcr; /* Wait controller state */
uint8_t wram[0x10000]; /* System RAM */ uint8_t wram[0x10000]; /* System RAM */
@ -210,6 +319,7 @@ struct VB {
vbOnFetch onFetch; /* CPU instruction fetch */ vbOnFetch onFetch; /* CPU instruction fetch */
vbOnFrame onFrame; /* VIP frame ready */ vbOnFrame onFrame; /* VIP frame ready */
vbOnRead onRead; /* CPU instruction read */ vbOnRead onRead; /* CPU instruction read */
vbOnSamples onSamples; /* VSU samples full */
vbOnWrite onWrite; /* CPU instruction write */ vbOnWrite onWrite; /* CPU instruction write */
void *tag; /* User data */ void *tag; /* User data */
}; };
@ -238,6 +348,7 @@ static int32_t SignExtend(int32_t value, int32_t bits) {
#include "bus.c" #include "bus.c"
#include "cpu.c" #include "cpu.c"
#include "vip.c" #include "vip.c"
#include "vsu.c"
@ -245,20 +356,21 @@ static int32_t SignExtend(int32_t value, int32_t bits) {
/* Process a simulation for a given number of clocks */ /* Process a simulation for a given number of clocks */
static int sysEmulate(VB *sim, uint32_t clocks) { static int sysEmulate(VB *sim, uint32_t clocks) {
return int ret;
cpuEmulate(sim, clocks) | ret = cpuEmulate(sim, clocks);
vipEmulate(sim, clocks) | padEmulate(sim, clocks);
padEmulate(sim, clocks) | tmrEmulate(sim, clocks);
tmrEmulate(sim, clocks) vsuEmulate(sim, clocks);
; ret |= vipEmulate(sim, clocks);
return ret;
} }
/* Determine how many clocks are guaranteed to process */ /* Determine how many clocks are guaranteed to process */
static uint32_t sysUntil(VB *sim, uint32_t clocks) { static uint32_t sysUntil(VB *sim, uint32_t clocks) {
clocks = cpuUntil(sim, clocks); clocks = cpuUntil(sim, clocks);
clocks = vipUntil(sim, clocks);
clocks = padUntil(sim, clocks); clocks = padUntil(sim, clocks);
clocks = tmrUntil(sim, clocks); clocks = tmrUntil(sim, clocks);
clocks = vipUntil(sim, clocks);
return clocks; return clocks;
} }
@ -395,6 +507,27 @@ VBAPI vbOnRead vbGetReadCallback(VB *sim) {
return sim->onRead; return sim->onRead;
} }
/* Retrieve the audio samples buffer */
VBAPI void* vbGetSamples(VB *sim, uint32_t *capacity, uint32_t *position) {
if (capacity == NULL) {
if (capacity != NULL)
*capacity = 0;
if (position != NULL)
*position = 0;
} else {
if (capacity != NULL)
*capacity = sim->vsu.out.capacity;
if (position != NULL)
*position = sim->vsu.out.offset >> 1;
}
return sim->vsu.out.samples;
}
/* Retrieve the samples callback handler */
VBAPI vbOnSamples vbGetSamplesCallback(VB *sim) {
return sim->onSamples;
}
/* Retrieve the value in a system register */ /* Retrieve the value in a system register */
VBAPI uint32_t vbGetSystemRegister(VB *sim, int index) { VBAPI uint32_t vbGetSystemRegister(VB *sim, int index) {
return index < 0 || index > 31 ? 0 : cpuGetSystemRegister(sim, index); return index < 0 || index > 31 ? 0 : cpuGetSystemRegister(sim, index);
@ -412,13 +545,15 @@ VBAPI vbOnWrite vbGetWriteCallback(VB *sim) {
/* Initialize a simulation instance */ /* Initialize a simulation instance */
VBAPI VB* vbInit(VB *sim) { VBAPI VB* vbInit(VB *sim) {
sim->cart.ram = NULL; sim->cart.ram = NULL;
sim->cart.rom = NULL; sim->cart.rom = NULL;
sim->onExecute = NULL; sim->vsu.out.samples = NULL;
sim->onFetch = NULL; sim->onExecute = NULL;
sim->onFrame = NULL; sim->onFetch = NULL;
sim->onRead = NULL; sim->onFrame = NULL;
sim->onWrite = NULL; sim->onRead = NULL;
sim->onSamples = NULL;
sim->onWrite = NULL;
vbReset(sim); vbReset(sim);
return sim; return sim;
} }
@ -445,9 +580,10 @@ VBAPI VB* vbReset(VB *sim) {
/* Components */ /* Components */
cpuReset(sim); cpuReset(sim);
vipReset(sim);
padReset(sim); padReset(sim);
tmrReset(sim); tmrReset(sim);
vipReset(sim);
vsuReset(sim);
return sim; return sim;
} }
@ -526,6 +662,23 @@ VBAPI vbOnRead vbSetReadCallback(VB *sim, vbOnRead callback) {
return prev; return prev;
} }
/* Specify a new audio samples buffer */
VBAPI int vbSetSamples(VB *sim, void *samples, uint32_t capacity) {
if (capacity == 0 || capacity > 0x40000000)
return 1;
sim->vsu.out.capacity = capacity;
sim->vsu.out.offset = 0;
sim->vsu.out.samples = samples;
return 0;
}
/* Specify a new samples callback handler */
VBAPI vbOnSamples vbSetSamplesCallback(VB *sim, vbOnSamples callback) {
vbOnSamples prev = sim->onSamples;
sim->onSamples = callback;
return prev;
}
/* Specify a new value for a system register */ /* Specify a new value for a system register */
VBAPI uint32_t vbSetSystemRegister(VB *sim, int index, uint32_t value) { VBAPI uint32_t vbSetSystemRegister(VB *sim, int index, uint32_t value) {
return index < 0 || index > 31 ? 0 : return index < 0 || index > 31 ? 0 :

View File

@ -23,6 +23,7 @@ extern "C" {
VB_DIRECT_FETCH VB_DIRECT_FETCH
VB_DIRECT_FRAME VB_DIRECT_FRAME
VB_DIRECT_READ VB_DIRECT_READ
VB_DIRECT_SAMPLES
VB_DIRECT_WRITE VB_DIRECT_WRITE
Implements callbacks as direct function calls with names given by the above Implements callbacks as direct function calls with names given by the above
@ -86,12 +87,13 @@ extern "C" {
typedef struct VB VB; typedef struct VB VB;
/* Callbacks */ /* Callbacks */
typedef int (*vbOnException)(VB *sim, uint16_t *cause); typedef int (*vbOnException)(VB *sim, uint16_t *cause);
typedef int (*vbOnExecute )(VB *sim, uint32_t address, const uint16_t *code, int length); typedef int (*vbOnExecute )(VB *sim, uint32_t address, const uint16_t *code, int length);
typedef int (*vbOnFetch )(VB *sim, int fetch, uint32_t address, int32_t *value, uint32_t *cycles); typedef int (*vbOnFetch )(VB *sim, int fetch, uint32_t address, int32_t *value, uint32_t *cycles);
typedef int (*vbOnFrame )(VB *sim); typedef int (*vbOnFrame )(VB *sim);
typedef int (*vbOnRead )(VB *sim, uint32_t address, int type, int32_t *value, uint32_t *cycles); typedef int (*vbOnRead )(VB *sim, uint32_t address, int type, int32_t *value, uint32_t *cycles);
typedef int (*vbOnWrite )(VB *sim, uint32_t address, int type, int32_t *value, uint32_t *cycles, int *cancel); typedef void (*vbOnSamples )(VB *sim, int16_t *buffer, uint32_t capacity);
typedef int (*vbOnWrite )(VB *sim, uint32_t address, int type, int32_t *value, uint32_t *cycles, int *cancel);
@ -112,6 +114,8 @@ VBAPI void vbGetPixels (VB *sim, void *left, int leftStrideX,
VBAPI uint32_t vbGetProgramCounter (VB *sim); VBAPI uint32_t vbGetProgramCounter (VB *sim);
VBAPI int32_t vbGetProgramRegister (VB *sim, int index); VBAPI int32_t vbGetProgramRegister (VB *sim, int index);
VBAPI vbOnRead vbGetReadCallback (VB *sim); VBAPI vbOnRead vbGetReadCallback (VB *sim);
VBAPI void* vbGetSamples (VB *sim, uint32_t *capacity, uint32_t *position);
VBAPI vbOnSamples vbGetSamplesCallback (VB *sim);
VBAPI uint32_t vbGetSystemRegister (VB *sim, int index); VBAPI uint32_t vbGetSystemRegister (VB *sim, int index);
VBAPI void* vbGetUserData (VB *sim); VBAPI void* vbGetUserData (VB *sim);
VBAPI vbOnWrite vbGetWriteCallback (VB *sim); VBAPI vbOnWrite vbGetWriteCallback (VB *sim);
@ -128,6 +132,8 @@ VBAPI uint16_t vbSetKeys (VB *sim, uint16_t keys);
VBAPI uint32_t vbSetProgramCounter (VB *sim, uint32_t value); VBAPI uint32_t vbSetProgramCounter (VB *sim, uint32_t value);
VBAPI int32_t vbSetProgramRegister (VB *sim, int index, int32_t value); VBAPI int32_t vbSetProgramRegister (VB *sim, int index, int32_t value);
VBAPI vbOnRead vbSetReadCallback (VB *sim, vbOnRead callback); VBAPI vbOnRead vbSetReadCallback (VB *sim, vbOnRead callback);
VBAPI int vbSetSamples (VB *sim, void *samples, uint32_t capacity);
VBAPI vbOnSamples vbSetSamplesCallback (VB *sim, vbOnSamples callback);
VBAPI uint32_t vbSetSystemRegister (VB *sim, int index, uint32_t value); VBAPI uint32_t vbSetSystemRegister (VB *sim, int index, uint32_t value);
VBAPI void* vbSetUserData (VB *sim, void *tag); VBAPI void* vbSetUserData (VB *sim, void *tag);
VBAPI vbOnWrite vbSetWriteCallback (VB *sim, vbOnWrite callback); VBAPI vbOnWrite vbSetWriteCallback (VB *sim, vbOnWrite callback);

530
core/vsu.c Normal file
View File

@ -0,0 +1,530 @@
/* This file is included into vb.c and cannot be compiled on its own. */
#ifdef VBAPI
/********************************* Constants *********************************/
/* Analog output low-pass filter coefficient = 0.022 / (0.022 + 1 / 41700) */
#define RC_A (float) (1 - 1 / 918.4)
/******************************** Lookup Data ********************************/
/* Noise feedback bit positions by tap field */
static uint8_t NOISE_TAPS[] = { 14, 10, 13, 4, 8, 6, 9, 11 };
/* Clock flags per output sample -- 479 clocks plus bit value */
/* Ensures exactly 200,000 clocks every 417 samples = 41,700 Hz */
static uint32_t SAMPLE_CLOCKS[] = {
0xD6B6B5B5, 0x5ADAD6D6, 0x6D6B6B5B, 0xB5B5ADAD,
0xD6D6B6B5, 0x6B5B5ADA, 0xAD6D6D6B, 0xB6B5B5AD,
0x5ADAD6D6, 0x6B6B5B5B, 0xB5ADAD6D, 0xD6D6B6B5,
0x5B5ADAD6, 1
};
/***************************** Callback Handlers *****************************/
/* Samples buffer is full */
#ifndef VB_DIRECT_SAMPLES
#define VB_ON_SAMPLES sim->onSamples
#else
extern void VB_DIRECT_SAMPLES(VB *, void *, uint32_t);
#define VB_ON_SAMPLES VB_DIRECT_SAMPLES
#endif
static void vsuOnSamples(VB *sim) {
if (sim->onSamples != NULL)
VB_ON_SAMPLES(sim, sim->vsu.out.samples, sim->vsu.out.capacity);
}
#undef VB_ON_EXCEPTION
/***************************** Module Functions ******************************/
/* Stage the next frequency modification value */
static void vsuNextFreqMod(VB *sim, Channel *chan) {
uint16_t next;
/* Sweep */
if (sim->vsu.freqmod.func == 0) {
next = chan->freq.current >> sim->vsu.freqmod.shift;
if (sim->vsu.freqmod.dir == 0)
next = chan->freq.current - next;
else next = chan->freq.current + next;
if (next > 2047)
chan->int_.enb = 0;
}
/* Modulation */
else {
next = (chan->freq.written +
sim->vsu.modulation[sim->vsu.freqmod.sample]) & 2047;
if (sim->vsu.freqmod.sample != 31)
sim->vsu.freqmod.sample++;
else if (sim->vsu.freqmod.rep)
sim->vsu.freqmod.sample = 0;
}
/* Configure state */
sim->vsu.freqmod.next = next;
}
/* Process one channel */
static void vsuEmulateChannel(VB *sim, int index, uint32_t clocks) {
uint32_t bit; /* Pseudorandom bit */
Channel *chan; /* Channel handle */
uint32_t level; /* Stereo output level */
uint32_t sample; /* Input sample */
uint32_t until; /* Clocks to process sub-channel components */
int e; /* Iterator */
/* Select channel */
chan = &sim->vsu.channels[index];
/* Select input sample */
sample =
!chan->int_.enb ? 0 : /* Disabled */
index == 5 ? (sim->vsu.noise.register_ & 1) ? 63 : 0 : /* Noise */
chan->wave.wave > 4 ? 0 : /* Wave range */
sim->vsu.waves[chan->wave.wave][chan->wave.sample] /* Wave */
;
/* Compute output samples */
for (e = 0; e < 2; e++) {
level = e == 0 ? chan->lrv.left : chan->lrv.right;
level = (level * chan->env.value >> 3) + (level && chan->env.value);
chan->output[e] = level * sample;
}
/* Channel is disabled */
if (!chan->int_.enb)
return;
/* Process all clocks */
do {
/* Clocks until next state change */
until = clocks;
if (chan->clocks < until) /* Next sample */
until = chan->clocks;
if (
chan->env.enb && /* Modifications enabled */
chan->env.clocks < until /* Next modification */
) until = chan->env.clocks;
if (
chan->int_.auto_ && /* Shutoff enabled */
chan->int_.clocks < until /* Shutoff */
) until = chan->int_.clocks;
if (
index == 4 && /* Channel 5 */
sim->vsu.freqmod.enb && /* Modifications enabled */
sim->vsu.freqmod.interval != 0 && /* Modifications valid */
sim->vsu.freqmod.clocks < until /* Next modification */
) until = sim->vsu.freqmod.clocks;
/* Manage clocks */
clocks -= until;
/* Automatic shutoff */
if (
chan->int_.auto_ && /* Shutoff enabled */
chan->int_.clocks == until
) {
chan->int_.enb = 0;
return;
}
/* Next sample */
if (chan->clocks == until) {
/* Wave */
if (index != 5) {
chan->clocks = 4 * (2048 - (uint32_t) chan->freq.current);
chan->wave.sample = (chan->wave.sample + 1) & 31;
}
/* Noise */
else {
chan->clocks = 40 * (2048 - (uint32_t) chan->freq.current);
bit = ((
sim->vsu.noise.register_ >> NOISE_TAPS[sim->vsu.noise.tap]^
sim->vsu.noise.register_ >> 7
) & 1) ^ 1;
sim->vsu.noise.register_ = bit |
(sim->vsu.noise.register_ << 1 & 0x7FFE);
}
}
/* Envelope modification */
if (
chan->env.enb && /* Modifications enabled */
chan->env.clocks == until
) {
if (chan->env.dir == 0 && chan->env.value != 0)
chan->env.value--;
else if (chan->env.dir == 1 && chan->env.value != 15)
chan->env.value++;
else if (chan->env.rep)
chan->env.value = chan->env.reload;
else chan->env.enb = 0;
chan->env.clocks = (uint32_t) chan->env.interval * 307220;
}
/* Frequency modification */
if (
index == 4 && /* Channel 5 */
sim->vsu.freqmod.enb && /* Modifications enabled */
sim->vsu.freqmod.interval != 0 && /* Modifications valid */
sim->vsu.freqmod.clocks == until
) {
chan->freq.current = sim->vsu.freqmod.next;
vsuNextFreqMod(sim, chan);
if (!chan->int_.enb)
return;
sim->vsu.freqmod.clocks = (uint32_t) sim->vsu.freqmod.interval *
(sim->vsu.freqmod.clk == 0 ? 19201 : 153610);
}
} while (clocks != 0);
}
/* Write a value to S*EV0 */
static void vsuWriteEV0(VB *sim, int index, uint8_t value) {
Channel *chan = &sim->vsu.channels[index];
/* Parse fields */
chan->env.dir = value >> 3 & 1;
chan->env.interval = value & 7;
chan->env.value = value >> 4 & 15;
chan->env.reload = chan->env.value;
/* Configure state */
chan->env.clocks = (uint32_t) chan->env.interval * 307220;
}
/* Write a value to S*EV1 */
static void vsuWriteEV1(VB *sim, int index, uint8_t value) {
Channel *chan = &sim->vsu.channels[index];
/* Parse fields */
chan->env.enb = value & 1;
chan->env.rep = value >> 1 & 1;
/* Processing by channel */
switch (index) {
case 4: /* Channel 5 */
sim->vsu.freqmod.enb = value >> 6 & 1;
sim->vsu.freqmod.func = value >> 4 & 1;
sim->vsu.freqmod.rep = value >> 4 & 1;
vsuNextFreqMod(sim, chan);
break;
case 5: /* Channel 6 */
sim->vsu.noise.tap = value >> 4 & 7;
sim->vsu.noise.register_ = 0x0000;
}
}
/* Write a value to S*FQH */
static void vsuWriteFQH(VB *sim, int index, uint16_t value) {
Channel *chan = &sim->vsu.channels[index];
value = value << 8 & 0x0700;
chan->freq.current = (chan->freq.current & 0x00FF) | value;
chan->freq.written = (chan->freq.written & 0x00FF) | value;
}
/* Write a value to S*FQL */
static void vsuWriteFQL(VB *sim, int index, uint8_t value) {
Channel *chan = &sim->vsu.channels[index];
chan->freq.current = (chan->freq.current & 0x0700) | value;
chan->freq.written = (chan->freq.written & 0x0700) | value;
}
/* Write a value to S*INT */
static void vsuWriteINT(VB *sim, int index, uint8_t value) {
Channel *chan = &sim->vsu.channels[index];
/* Parse fields */
chan->int_.auto_ = value >> 5 & 1;
chan->int_.enb = value >> 7 & 1;
chan->int_.interval = value & 31;
/* Update state */
chan->int_.clocks = 76805 * (uint32_t) chan->int_.interval;
chan->clocks = (index == 5 ? 40 : 4) *
((uint32_t) 2048 - chan->freq.current);
if (index != 5)
chan->wave.sample = 0;
else sim->vsu.noise.register_ = 0x0000;
if (index == 4) {
sim->vsu.freqmod.clocks = (uint32_t) sim->vsu.freqmod.interval *
(sim->vsu.freqmod.clk ? 153610 : 19201);
sim->vsu.freqmod.sample = 0;
}
}
/* Write a value to S*LRV */
static void vsuWriteLRV(VB *sim, int index, uint8_t value) {
Channel *chan = &sim->vsu.channels[index];
chan->lrv.left = value >> 4 & 15;
chan->lrv.right = value & 15;
}
/* Write a value to S*RAM */
static void vsuWriteRAM(VB *sim, int index, uint8_t value) {
sim->vsu.channels[index].wave.wave = value & 7;
}
/* Write a value to S5SWP */
static void vsuWriteSWP(VB *sim, uint8_t value) {
uint32_t clocks;
/* Parse fields */
sim->vsu.freqmod.clk = value >> 7 & 1;
sim->vsu.freqmod.dir = value >> 3 & 1;
sim->vsu.freqmod.interval = value >> 4 & 15;
sim->vsu.freqmod.shift = value & 7;
/* Configure state */
clocks = (uint32_t) sim->vsu.freqmod.interval *
(sim->vsu.freqmod.clk ? 153610 : 19201);
if (clocks < sim->vsu.freqmod.clocks)
sim->vsu.freqmod.clocks = clocks;
}
/***************************** Module Functions ******************************/
/* Process component */
static void vsuEmulate(VB *sim, uint32_t clocks) {
Channel *chan; /* Channel handle */
uint32_t digital[2]; /* Digital output samples */
float i0; /* Current analog input sample */
float o0; /* Current analog output sample */
uint32_t until; /* Clocks to process channels */
int e, x; /* Iterators */
/* Process all clocks */
do {
/* Clocks until next sample */
until = clocks;
if (sim->vsu.clocks < until)
until = sim->vsu.clocks;
/* Working variables */
clocks -= until;
digital[0] = digital[1] = 0;
/* Process all channels */
for (x = 0; x < 6; x++) {
chan = &sim->vsu.channels[x];
vsuEmulateChannel(sim, x, until);
digital[0] += chan->output[0];
digital[1] += chan->output[1];
}
/* Output sample */
for (e = 0; e < 2; e++) {
/* Compute the output sample for this stereo channel */
i0 = (digital[e] >> 4) / 685.0f;
o0 = RC_A * (sim->vsu.out.o1[e] + i0 - sim->vsu.out.i1[e]);
if (o0 < -1.0f) o0 = -1.0f;
if (o0 > +1.0f) o0 = +1.0f;
sim->vsu.out.i1[e] = i0;
sim->vsu.out.o1[e] = o0;
/* Output the sample to caller memory */
if (
sim->vsu.out.samples != NULL &&
sim->vsu.out.offset >> 1 < sim->vsu.out.capacity
) {
sim->vsu.out.samples[sim->vsu.out.offset++] =
(int16_t) (o0 * 32767.0f + (o0 < 0.0f ? -0.5f : +0.5f));
if (
e == 1 &&
sim->vsu.out.offset >> 1 == sim->vsu.out.capacity
) vsuOnSamples(sim);
}
}
/* Advance to the next sample */
sim->vsu.sample += sim->vsu.sample == 416 ? -416 : 1;
sim->vsu.clocks = 479 + (1 &
SAMPLE_CLOCKS[sim->vsu.sample >> 5] >> (sim->vsu.sample & 31));
} while (clocks != 0);
}
/* Simulate a hardware reset */
static void vsuReset(VB *sim) {
Channel *chan; /* Channel handle */
int x, y; /* Iterators */
/* Memory */
for (x = 0; x < 32; x++) {
sim->vsu.modulation[x] = 0;
for (y = 0; y < 5; y++)
sim->vsu.waves[y][x] = 0;
}
/* Channel state */
for (x = 0; x < 6; x++) {
chan = &sim->vsu.channels[x];
chan->clocks = 0;
chan->env.clocks = 0;
chan->env.enb = 0;
chan->env.dir = 0;
chan->env.interval = 0;
chan->env.reload = 0;
chan->env.rep = 0;
chan->env.value = 0;
chan->freq.current = 0x000;
chan->freq.written = 0x000;
chan->lrv.left = 0;
chan->lrv.right = 0;
chan->int_.auto_ = 0;
chan->int_.clocks = 0;
chan->int_.enb = 0;
chan->int_.interval = 0;
chan->wave.sample = 0;
chan->wave.wave = 0;
}
/* Other channel state */
sim->vsu.freqmod.clk = 0;
sim->vsu.freqmod.clocks = 0;
sim->vsu.freqmod.dir = 0;
sim->vsu.freqmod.enb = 0;
sim->vsu.freqmod.func = 0;
sim->vsu.freqmod.interval = 0;
sim->vsu.freqmod.next = 0;
sim->vsu.freqmod.rep = 0;
sim->vsu.freqmod.sample = 0;
sim->vsu.freqmod.shift = 0;
sim->vsu.noise.register_ = 0;
sim->vsu.noise.tap = 0;
/* Other */
sim->vsu.clocks = 479 + (SAMPLE_CLOCKS[0] & 1);
sim->vsu.sample = 0;
for (x = 0; x < 2; x++)
sim->vsu.out.i1[x] = sim->vsu.out.o1[x] = 0;
}
/* Write a typed value to the VSU bus */
static void vsuWrite(VB*sim,uint32_t address,int type,int32_t value,int debug){
/* Only byte writes are allowed */
switch (type) {
case VB_S16:
case VB_U16:
case VB_S32:
return;
}
/* Unmapped */
if (address & 3)
return;
/* Working variables */
address &= 0x7FF;
/* Wave memory */
if (address < 0x280) {
if (debug || !(
sim->vsu.channels[0].int_.enb |
sim->vsu.channels[1].int_.enb |
sim->vsu.channels[2].int_.enb |
sim->vsu.channels[3].int_.enb |
sim->vsu.channels[4].int_.enb |
sim->vsu.channels[5].int_.enb
)) sim->vsu.waves[address >> 7][address >> 2 & 31] = value & 63;
}
/* Modulation memory */
else if (address < 0x300) {
if (debug || !sim->vsu.channels[4].int_.enb)
sim->vsu.modulation[address >> 2 & 31] = value;
}
/* I/O register */
else switch (address >> 2) {
case 0x400>>2: vsuWriteINT(sim, 0, value); break; /* S1INT */
case 0x404>>2: vsuWriteLRV(sim, 0, value); break; /* S1LRV */
case 0x408>>2: vsuWriteFQL(sim, 0, value); break; /* S1FQL */
case 0x40C>>2: vsuWriteFQH(sim, 0, value); break; /* S1FQH */
case 0x410>>2: vsuWriteEV0(sim, 0, value); break; /* S1EV0 */
case 0x414>>2: vsuWriteEV1(sim, 0, value); break; /* S1EV1 */
case 0x418>>2: vsuWriteRAM(sim, 0, value); break; /* S1RAM */
case 0x440>>2: vsuWriteINT(sim, 1, value); break; /* S2INT */
case 0x444>>2: vsuWriteLRV(sim, 1, value); break; /* S2LRV */
case 0x448>>2: vsuWriteFQL(sim, 1, value); break; /* S2FQL */
case 0x44C>>2: vsuWriteFQH(sim, 1, value); break; /* S2FQH */
case 0x450>>2: vsuWriteEV0(sim, 1, value); break; /* S2EV0 */
case 0x454>>2: vsuWriteEV1(sim, 1, value); break; /* S2EV1 */
case 0x458>>2: vsuWriteRAM(sim, 1, value); break; /* S2RAM */
case 0x480>>2: vsuWriteINT(sim, 2, value); break; /* S3INT */
case 0x484>>2: vsuWriteLRV(sim, 2, value); break; /* S3LRV */
case 0x488>>2: vsuWriteFQL(sim, 2, value); break; /* S3FQL */
case 0x48C>>2: vsuWriteFQH(sim, 2, value); break; /* S3FQH */
case 0x490>>2: vsuWriteEV0(sim, 2, value); break; /* S3EV0 */
case 0x494>>2: vsuWriteEV1(sim, 2, value); break; /* S3EV1 */
case 0x498>>2: vsuWriteRAM(sim, 2, value); break; /* S3RAM */
case 0x4C0>>2: vsuWriteINT(sim, 3, value); break; /* S4INT */
case 0x4C4>>2: vsuWriteLRV(sim, 3, value); break; /* S4LRV */
case 0x4C8>>2: vsuWriteFQL(sim, 3, value); break; /* S4FQL */
case 0x4CC>>2: vsuWriteFQH(sim, 3, value); break; /* S4FQH */
case 0x4D0>>2: vsuWriteEV0(sim, 3, value); break; /* S4EV0 */
case 0x4D4>>2: vsuWriteEV1(sim, 3, value); break; /* S4EV1 */
case 0x4D8>>2: vsuWriteRAM(sim, 3, value); break; /* S4RAM */
case 0x500>>2: vsuWriteINT(sim, 4, value); break; /* S5INT */
case 0x504>>2: vsuWriteLRV(sim, 4, value); break; /* S5LRV */
case 0x508>>2: vsuWriteFQL(sim, 4, value); break; /* S5FQL */
case 0x50C>>2: vsuWriteFQH(sim, 4, value); break; /* S5FQH */
case 0x510>>2: vsuWriteEV0(sim, 4, value); break; /* S5EV0 */
case 0x514>>2: vsuWriteEV1(sim, 4, value); break; /* S5EV1 */
case 0x518>>2: vsuWriteRAM(sim, 4, value); break; /* S5RAM */
case 0x51C>>2: vsuWriteSWP(sim, value); break; /* S5SWP */
case 0x540>>2: vsuWriteINT(sim, 5, value); break; /* S5INT */
case 0x544>>2: vsuWriteLRV(sim, 5, value); break; /* S5LRV */
case 0x548>>2: vsuWriteFQL(sim, 5, value); break; /* S5FQL */
case 0x54C>>2: vsuWriteFQH(sim, 5, value); break; /* S5FQH */
case 0x550>>2: vsuWriteEV0(sim, 5, value); break; /* S5EV0 */
case 0x554>>2: vsuWriteEV1(sim, 5, value); break; /* S5EV1 */
case 0x580>>2: /* SSTOP */
if ((value & 1) == 0)
break;
sim->vsu.channels[0].int_.enb =
sim->vsu.channels[1].int_.enb =
sim->vsu.channels[2].int_.enb =
sim->vsu.channels[3].int_.enb =
sim->vsu.channels[4].int_.enb =
sim->vsu.channels[5].int_.enb = 0;
}
}
#endif /* VBAPI */